Vital component delivered to NSTX-U fusion facility

February 13, 2023, 7:00AMNuclear News
The center stack casing staged horizontally at Holtec’s manufacturing division in East Pittsburgh. (Photo: Holtec)

A key component needed for the National Spherical Torus Experiment–Upgrade (NSTX-U), the flagship fusion facility currently under repair at the Department of Energy’s Princeton Plasma Physics Laboratory (PPPL), has been delivered to the lab’s New Jersey campus.

NSTX-U could serve as the model for a pilot fusion plant, PPPL says

April 18, 2022, 9:30AMNuclear News
PPPL physicist Walter Guttenfelder with figures from the paper he coauthored with members of the NSTX-U team and 23 collaborative institutions worldwide. (Photo: Elle Starkman/PPPL Office of Communications. Collage: Kiran Sudarsanan)

According to the Department of Energy’s Princeton Plasma Physics Laboratory, recent simulations and analysis demonstrate that the design of its flagship fusion facility, the National Spherical Torus Experiment Upgrade (NSTX-U), which is currently under repair, could serve as a model for an economically attractive next-generation fusion pilot plant.

ANS Task Force: Accelerating nuclear R&D investment is key to securing America’s clean energy future

February 17, 2021, 11:58AMNuclear News

The ANS Task Force on Public Investment in Nuclear Research and Development has just issued a report titled “The U.S. Nuclear R&D Imperative.” Visit ans.org/policy/rndreport/ to learn more and to read the report in its entirety.

The following article, originally published in the February 2021 issue of Nuclear News, describes the formation of the Task Force and the principles that guided its members as they developed specific nuclear R&D funding recommendations to ensure that a new generation of nuclear energy technologies is ready for deployment in 2030 and beyond.

Building radiation-resistant and repairable electronics

October 6, 2020, 9:38AMANS Nuclear Cafe

CMOS sensors such as this could be made more tolerant to ionizing radiation. Photo: NASA/Wikimedia Commons

High-energy radiation can be detrimental to electronic equipment, necessitating the use of radiation-hardened and -resistant electronics in nuclear energy, decommissioning, and space exploration. The online newsletter Tech Xplore reports on a radiation-hardened and repairable integrated circuit being fabricated by researchers at Peking University, Shanghai Tech University, and the Chinese Academy of Sciences.

The radiation-immune and repairable circuits developed by the researchers are based on field-effect transistors (FET) that use a semiconducting carbon nanotube transistor as a channel, an ion gel as its gate, and a substrate made of polyimide. According to the article, the FETs have a radiation tolerance of up to 15 Mrad, which is notably higher than the 1 Mrad tolerance of silicon-based transistors. The FETs are also capable of being recovered by annealing at moderate temperatures (100 °C for 10 minutes).